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Abstract: Recently published research shows that members of regional 
communication networks form links based on how risky their exchanges with 
others may be: low-risk situations favor the creation of bridging structures that solve 
coordination problems, whereas high-risk situations lead to the establishment of 
bonding structures that make detection and punishment of defection more likely. 
This basic expectation has been tested in low-risk regional arenas, where indeed 
more bridging structures formed in time (Berardo and Scholz 2010). However, 
no empirical evidence on the formation of networks has been produced yet in 
high-risk social-ecological systems (HRSES). In this article, I study the network 
of communication among stakeholders in a small river basin in Argentina that 
has been subject to high levels of environmental stress over the last decades and 
empirically test whether more bonding structures tend to form in this high-risk SE 
system. Findings show that actors in the network have a tendency to create more 
triadic bonding structures, as expected. However, complementary results offer a 
more nuanced picture of how networks look like in highly-risky regional settings 
and caution against an overly optimistic view linking bonding in networks to the 
solution of collective action problems of a regional scale.
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1. Introduction
The issue of how to protect common-pool resources from overuse has occupied 
the minds of social scientists for many years. The path-breaking work of Ostrom 
and colleagues has improved our understanding of how the management of a wide 
range of natural resources can be optimized in complex social-ecological systems 
where multiple users interact with each other. Among the components of social-
ecological systems that can help solve problems of overuse are the networks that 
form when social and political actors communicate with each other (Ostrom 2005, 
2009). Communication networks contribute to the formation of social capital, 
which in turn lubricates social and political relations by increasing trust and 
trustworthiness (Bromiley and Cummings 1995; Sabatier et al. 2005), favoring the 
transmission of scarce resources among the components of a group (Agranoff and 
McGuire 2003), and in general producing the conditions that facilitate sustained 
cooperation among the members of a group (Scholz et al. 2008).

In a recent contribution to the study of this topic, Berardo and Scholz (2010) 
examined the formation and evolution of networks in 10 US estuaries, linking the 
formation of specific structures in the networks to the types of problems the actors 
faced and the risk associated with them. According to their “risk hypothesis”, 
actors may be embedded in high-risk or low-risk social-political environments, 
which in turn affects their network behavior (the types of social connections 
they make in their networks of communication). High-risk arenas, the argument 
goes, are mainly characterized by cooperation problems among stakeholders that 
negatively affect the sustainability of resources. The overuse of common-pool 
resources (CPRs) in Social-Ecological Systems (SES) is, of course, a classic 
example of such cooperation problems. The “risk hypothesis” anchors itself in 
the social capital literature, and predicts that in the presence of uncooperative 
behavior, actors are likely to create close knit, bonding communication structures 
because these structures facilitate the flow of redundant information that is more 
useful for detecting and punishing defection (Coleman 1988).

But low-risk can be prevalent as well in SES, since it is not always the case that 
actors face cooperation problems. Instead, in some instances actors predominantly 
face coordination problems, which take place when actors have roughly the same 
goals, but cannot quickly converge in a desired course of action to attain such 
goals. Different towns sharing a river, for instance, may independently arrive 
at the conclusion that they need to treat their wastewater to a high standard 
to prevent pollution of the waterway, but may also not be fully aware of each 
other’s strategies to achieve this goal. In situations of low-risk such as this, where 
stakeholders are “on the same page”, the “risk hypothesis” predicts that actors 
will create links that facilitate the emergence of bridging structures, which are 
more conducive to the flow of non-overlapping information that leads to finding 
innovative solutions to shared problems.

Berardo and Scholz showed that in the estuaries they analyzed actors had a 
tendency to form star-like, bridging structures where a central node had the potential 
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to spread innovative information around the network, thereby solving underlying 
coordination problems. The authors claimed that this tendency was explained 
at least in part by the fact that the regional governance systems in the estuaries 
were slowly developing in the absence of acute environmental problems, which 
indicated that the risk of widespread defection was low. Their research design thus 
confirmed that low-risk situations are associated with the emergence of bridging 
structures in communication networks, but could not properly test whether high-
risk situations are in fact associated with the creation of more bonding structures.

In this article, I address this issue by examining the network of communication 
among environmental stakeholders in the San Antonio river basin, located in 
central Argentina. This area is a High-Risk Social-Ecological System (from now 
on, HRSES) because it faces severe environmental problems that are the result of 
uncooperative (defective) behavior in the use of common pool resources in the 
area (as it will be described in detail in a later section).

Results will show that in this HRSES there is a tendency to the formation 
of bonding structures in the network, as expected by Berardo and Scholz’s “risk 
hypothesis”, but also that activity in the network is concentrated around highly 
central actors that can also fulfill a coordinating role. This last finding runs contrary 
to expectations because structures that indicate the presence of coordinators should 
be prevalent only in low-risk arenas. The combination of bonding and bridging 
structures that emerge in parallel is important because it suggests that self-organized 
communication networks might evolve in ways that facilitate the simultaneous 
solution of different types of problems. In this regard, the results provide further 
empirical support to the long-standing idea that governance subsystems in SES are 
inherently complex (Ostrom 2009), and that they can adapt to face challenges that 
unfold at an aggregate level beyond the control of individual actors (Lubell 2013).

2. Risk in social-ecological systems and the structure of 
communication networks
Anderies et al. (2004) define an SES simply as the coupling of an ecological system 
and a social system, with the former containing biological or resource units and the 
latter being composed of social units. Extensive research in economics and political 
science in the last decades has shown that the collective action problems that occur 
in SES when myriad actors use resources are intensified when the systems are not 
contained in single, neatly defined political jurisdictions. Particularly in federal 
systems, the political fragmentation that characterizes many an SES is usually 
fertile ground for the emergence of institutional collective action (ICA) dilemmas 
that intensify environmental problems and imperil the chances of sustained 
collaboration among stakeholders (Feiock 2009; Feiock and Scholz 2010).

ICA dilemmas usually appear in fragmented systems when stakeholders free-
ride on each other’s efforts to protect a resource or provide a certain service, 
which is likely to trigger non-cooperative strategies as actors try to avoid the 
“sucker” label that comes from cooperating in the face of defection (Feiock 
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2013). Fragmentation in an SES is thus risky because defective behavior can 
quickly spread, negatively affecting the ecological balance of the system.

Fortunately, a long tradition of research has shown that defective behavior 
in the use of resources can be prevented. One of the key variables to understand 
how the governance subsystem of a SES may contribute to reducing the risk 
of defection is the exchange of information that takes place in communication 
networks of stakeholders (Ostrom 2009). Recently published research has 
made an initial attempt at explaining how these communication networks may 
be shaped by the risky environments in which actors participate. Berardo and 
Scholz (2010) described the evolution of communication networks between 
policy actors in 10 US estuaries and argued that networks adopted particular 
shapes based on the risks their members faced. Their “risk hypothesis” states 
that actors facing risky situations where defection is likely should build bonding 
relationships that facilitate the flow of redundant, overlapping information among 
their group of contacts. This type of information can be useful for detecting 
and punishing defective behavior. Thus, the emergence of this type of bonding 
capital strengthens the likelihood of observing cooperative behavior, particularly 
if it can be sustained in time (Burt 2005; Coleman 1988; Putnam 1993).

Berardo and Scholz used two different types of network structures to 
illustrate bonding, as shown in Figure 1.

In Figure 1, a solid arrow pointing from an actor (ego) to another one (alter) 
means that the ego requests information from the alter, whereas a dotted arrow 
represents a choice of ego to build a tie based on the existing ties (the solid arrows). 
Panel 1.A represents the choice of ego A to build a tie to C that reciprocates an 
already existing tie that goes from C to A. A reciprocated link signals that both 
actors in the dyad have decided to engage in a stronger relationship with each 
other, which lowers the risk of mutual defection and enhances the likelihood of 
sustaining cooperation in time (Axelrod 1984). If it is true that the creation of 
bonding relationships is a response to the vulnerability that actors face in HRSES, 
then more reciprocal links should be created in these systems as time passes 
(i.e. as the network evolves), given that they are the building blocks upon which 
cooperative reputations are built.

Figure 1: Bonding capital.
(Adapted from Berardo and Scholz 2010).
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H1. In a HRSES, actors will show a propensity to create reciprocal ties in their 
communication networks.
The second type of bonding structure in Figure1.B that would be formed by the 
dotted arrow is the transitive triad, which indicates bonding beyond the simpler 
case of the reciprocal dyad. In a triad composed by actors A, E, and D, A can decide 
to create a link to D based on both its existing relationship with E, and the existing 
relationship between E and D. Building a tie to “a friend of a friend” provides the 
redundant information that is the staple of bonding capital, and discourages defective 
behavior since the reputational costs of such defection grow as information is more 
readily available to members of the group (Burt 2005; Putnam 1993).

Because in a transitive triad information may flow both directly and indirectly 
to a node that builds it, this particular structural configuration reinforces its 
monitoring capabilities. In this narrow sense, a transitive triad is a stronger form 
of bonding when compared to a simpler reciprocal dyad, where information 
flows only between two nodes.

H2. In a HRSES, actors will show a propensity to create transitive triads in their 
communication networks.
The previous two hypotheses contain the expectations of observing more bonding 
capital configurations emerging when there are high levels of risk in social 
ecological systems. When levels of risk are low, however, the “risk hypothesis” 
predicts that networks will be configured differently. When actors face lower risks, 
the type of network structures they form should be different because defection is 
unlikely and actors may have a greater interest in working together to improve 
the sustainability of common-pool resources. In these cases, the reasoning goes, 
actors are less likely to form bonding configurations that are better to detect 
and punish defective behavior, and instead they should build configurations that 
are more conducive to the transmission of new, non-overlapping information 
(Burt 2005; Granovetter 1985) required to solve the problem of coordinating the 
behavior of multiple stakeholders with similar interests.

Figure 2 shows two types of bridging capital structures that may help solving 
coordination problems, according to the ‘risk hypothesis’. Panel 2.A shows actor 
A creating an “open 2-path” to reach C through B, which gives A greater access 
to non-overlapping information. The main argument for the creation of an “open 
2-path” here is that, faced with different choices of partners, A would prefer to 
create a tie to B because B gives A access to two sources of information (direct 
information from B and indirect information from C that B relays). Any other 
choices would reduce the benefits of bridging. For example, a tie to D would close 
the existing two-path A→E→D, which would then turn into a redundant transitive 
triad that is useful to contribute to the solution of cooperation problems but not 
coordination problems.

To reiterate the point, the tendency to create more bridging configurations 
should be observed in low risk SES. In a HRSES, the opposite should be true, as 
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was explained before, with actors forming bonding structures. Thus, the following 
hypothesis follows.

H3. In a HRSES, actors will show a negative propensity to create open 2-paths in 
their communication networks.
The final structure tested by Berardo and Scholz was the “popular alter” 
configuration in Figure 2.A. When actors face coordination problems, they 
tend to identify other nodes in the network that seem to be comparatively well-
endowed with information. Usually, more popular (or central) actors have the 
largest amount of information available at their disposal, thus being able to fulfill 
a coordination role. The importance of popular organizations with bridging 
capacity in ecosystem management has been duly examined in research showing 
that they help identifying common goals and interests and collaborative activities 
that lead the improvement in the management of shared natural resources (Folke 
et al. 2005; Wondolleck and Yaffee 2000).

In Figure 2.B, the most popular actor in the network is B, who is already 
contacted by two other nodes (D and C). Thus the expectation is that in low risk 
SES node A would build a tie to B, provided that the main problem in the SE system 
was one of coordination instead of cooperation. In a HRSES, where cooperation 
problems predominate instead of coordination problems, the expectation is just 
the opposite.

H4. In a HRSES, actors will show a negative propensity to create ties to popular 
alters in their communication networks.

3. The San Antonio river basin: a high-risk social-ecological system
I test the hypotheses outlined in the previous section with data collected in 2010 
and 2011 in the communication network formed by stakeholders in the San 
Antonio river basin in the province of Córdoba, in central Argentina. The basin 
covers an area of approximately 500 km2 and drains into the multipurpose San 
Roque reservoir, which generates hydroelectricity and provides drinkable water 

Figure 2: Bridging capital.
(Adapted from Berardo and Scholz 2010).
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for the city of Córdoba (population 1.3 million and located about 30 kilometers 
downstream from the reservoir’s dam). The basin is located in a semi-arid region, 
with average annual rainfall mounting to about 1000 millimeters in its western 
section and about 750 millimeters in the eastern area.

As shown in Figure 3, there are six local communities located along the river 
in the lower section of the basin in a short 15-kilometer segment: Cuesta Blanca, 
Mayu Sumaj, Tala Huasi, Icho Cruz, San Antonio de Arredondo, and Villa Carlos 
Paz. The first three towns are smaller in size while the last three are bigger (Villa 
Carlos Paz is the largest by a good margin with a population estimated between 
70,000 and 80,000). All six of them use the river as the main source of drinking 
water and often face water shortages, particularly in the driest months of the year. 
Historically, environmental regulations in the area have been extremely weak. 
Only recently have local governments started to better regulate practices that 
affect the use of, and access to, common pool resources such as public land and 
water resources. Nevertheless, enforcement of these rules remains feeble at best, 
mainly because the monitoring capabilities of local governments tend to be poor.

This weak institutional landscape helps explain the precarious ecological state 
of the basin, which has steadily worsened in the past years as economic activities 
develop that negatively affect the sustainability of natural resources in the area. 
Cingolani et al. (2008), for instance, show that the land cover in parts of the basin has 

Figure 3: San Antonio river basin.
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been modified sharply as a result of both the harvesting of exotic pine tree species 
for commercial purposes and the production of domestic livestock that contributes 
to land erosion and negatively affects water quality. Residues from wild fires (a 
seasonal problem in the region) and the improper treatment of sewage in the different 
towns are other factors that negatively affect water quality in the river and the San 
Roque reservoir, a eutrophic water body (Amé et al. 2003; Ruibal Conti et al. 2005)  
where algae blooms are common (La Voz del Interior 2010, 2011). Recent research 
even shows the presence of microcystins in the lake that frequently surpasses the 
guidelines suggested by the World Health Organization for drinking water and 
recreational exposure, and also of Anatoxin-a, a powerful neurotoxin that had 
not yet been identified elsewhere in South America and that should be considered 
“…a potential health hazard to humans, aquatic animals, livestock, and wildlife” 
(Ruiz et al. 2013, 15).

The situation is compounded by the unplanned urban growth that has been 
taking place in the basin for decades. Villa Carlos Paz, for example, has doubled in 
size in the last 20 years, but urban development in the other towns is accelerating 
as well. Research shows that current rates of water consumption per-capita in 
the area could lead to more severe water shortages in the future if not curved, 
even in the absence of further growth (Catalini and Garcia 2010). This state of 
affairs is generating political and social tension in the area (El Diario de Carlos 
Paz 2011). In the town of San Antonio de Arredondo, for instance, the decision 
of the local government to grant a permit to a developer to build 22 high-rise 
buildings in a legally established “nature reserve area” of about 140 acres was 
met in early 2013 with considerable opposition from a number of environmental 
NGOs and social movements who demanded a stop to what they saw as an out-of-
control development push that will fundamentally alter natural landscapes. This 
ongoing dispute is likely to be replicated in the future in other parts of the basin, 
as concerns over environment-related topics tend to occupy a more central place 
in the agendas of a larger number of non-governmental actors.

In general, stakeholders in the area acknowledge the gravity of these problems. 
The survey that was used to collect data for this article (described in more detail in 
the following section) included a question that asked: “in general, how would you 
rate the environmental state of the basin in a scale ranging from 0 to 10, where 0 
means that the basin is in a very poor shape from an environmental standpoint and 
10 means that the basin is in excellent shape from an environmental standpoint.” 
In the first wave of data collection, which took place in 2010, the mean value was 
2.83 (with a standard deviation (s.d.) of 1.40). In the second wave of data collection 
(2011), the mean value of responses increases, but only slightly to 3.18 (s.d. 1.55).

Summing up, the environmental problems in the San Antonio river basin, 
coupled with the social conflict that has emerged in the last decade as a response 
to what are perceived as insufficient efforts to promote the sustainable use of 
resources, make the San Antonio river basin a good example of a Social-Ecological 
System characterized by high systemic risk, or HRSES. According to the “risk 
hypothesis” (Berardo and Scholz 2010), and given that a HRSES is characterized 
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by an abundance of cooperation problems, one would expect to observe the 
emergence of bonding structures in the stakeholders’ communication network, as 
described in hypotheses 1 and 2, which serve to transfer information that makes 
it easier to detect and punish behavior that can intensify environmental problems.

4. Measurement of the communication network
Between February and April of 2010, I developed a search protocol to identify 
relevant stakeholders in the basin from web documents and stories appearing in 
the previous 24 months in both the main newspapers in the city of Cordoba and the 
local newspapers in the towns located in the basin. The identification of stakeholders 
was accomplished by obtaining the names of individuals and organizations that 
appeared in stories selected based on a combination of relevant keywords (“water 
quality”, “land use”, “biodiversity”, etc.) paired with the names of the towns in 
the San Antonio river basin. The process rendered the names of 48 individuals to 
interview, some of whom worked for the same organization (their responses were 
later aggregated, as described below). Starting in October of 2010, these individuals 
were asked to fill an online survey, which 40 of them did (83% response rate).

The survey included the following name generator to map the network of 
communication: “Can you name the individuals or organizations from whom 
you have obtained information (legal, technical, or a different kind) in the last 
12 months about environmental-related issues in the basin?” Responses to this 
question were used to map the network of communication, but also to collect 
identify stakeholders not present in the original list that was produced with the 
media search. Through this name generator I obtained the names of 18 new 
individuals who were also contacted and asked to answer the survey; nine of 
them did (50%). Overall then, 66 individuals were contacted, and 49 answered the 
survey (74% overall response rate).

The final step before mapping the communication network in the area was to 
aggregate names of individuals working for the same organization.1 When this 
process was completed, the final tally of stakeholders (the nodes in the communication 
network) reached 59 (44 organizations and 15 individuals), with survey responses 
from 43 of them, for a response rate at the aggregated level of 73%.

1  One of the questions in the survey asked “in general, when you get involved in discussions or 
activities related to the management of natural resources in the basin, do you do it as an individual, 
or do you represent an organization?” Given that the majority of respondents claimed to act in rep-
resentation of an organization rather than individually, I aggregated responses of the individuals 
who claimed to represent the same organization. The aggregation was performed for both the links 
reported, and for the calculation of the nodal attributes. To measure links in the network I adopted the 
simple rule that any mention by one member of the organization of a link to other node counted as a 
tie. So, if at least one respondent working for organization A named organization B as a contact, then 
it was assumed that the tie between the two nodes existed (values larger than 1 were converted to 1 in 
order to keep the adjacency matrix dichotomous – the examination of the existence of configurations 
described in the hypotheses does not require valued links).
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The process was repeated between October and December of 2011 to obtain a 
second observation of the network, which is necessary to perform a longitudinal 
analysis of network evolution and properly test hypotheses 1 through 4. The first 
stage was to contact the 66 individuals that composed the full set of respondents 
in 2010 and ask them to fill the survey again. A total of 45 of them filled the survey 
(67% response date). In this case, using the name generator produced the names 
of 16 new individuals, 8 of whom answered the survey (response rate of 50% in 
the snowball). Overall, 82 individuals were contacted in 2011, and 53 answered 
the survey (65% overall response rate).

Like it was the case in 2010, the final step consisted in aggregating names 
of individuals working for the same organization. This process rendered a final 
count of 70 stakeholders (57 organizations and 13 individuals) that are part of 
the network, with survey responses from 57 of them, for a response rate at the 
aggregated level of 81%. According to Huisman (2009), the stability of most 
network measures is not threatened with a rate of missing data as low as the one I 
obtained in 2010 (about 27%) and 2011 (19%).

A graphical representation of the network in the two years is contained in the 
Figure 4.

Nodes are sized by in-degree or number of incoming ties, and shaped 
by type. Square nodes are environmental NGOs, interest groups, or social 
movements that make the defense of the environment the centerpiece of their 
policy agendas. They include organizations such as Association of Friends 
of the San Antonio River (labeled ADARSA), Argentine Ecosystems (EcAr) 
and Foundation for Education and the Environment (FUNEAT). Circles are 
governmental actors and include town majors, city council members, and 
different local government offices that deal with environment-related issues. 
Up-pointing triangles are educational or research organizations, of which the 
most important are the National Council of Scientific and Technical Research 
(CONICET) and the Multidisciplinary Institute of Plant Biology at the National 
University of Cordoba (UNC-IMBIV). Crossed-squares are professional 
associations or business organizations, including the main water provider in the 
area – COOPI. Down-pointing triangles are other types of organizational actor. 
Finally, diamond-shape nodes are individuals (respondents that did not claim 
to represent an organization when they engaged in discussions related to the 
management of natural resources in the basin).

The network in 2010 has a density of 0.05, with an average degree of 4.20. 
In 2011, the network grows in size (there are more participants), but also in its 
density and average degree scores (0.06 and 4.84, respectively – see Table A1 in 
the Appendix for more information about the network). Most central actors in the 
network tend to be environmental NGOs, interest groups, or social movements, 
followed by some research and educational institutions. In the two networks, the 
nodes are also relatively clustered in a strong core, with many ties connecting 
them to each other. Governmental actors, on the other hand, remain scarcely 
connected. None of the six local governments in the area (Villa Carlos Paz, Mayu 
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Sumaj, Cuesta Blanca, San Antonio de Arredondo, Icho Cruz, and Tala Huasi) 
obtains information about environmental-related issues from either of the other 
five. This fragmentation at the local level suggests that environmental problems 

CAPC
CICVCP
FUNAM
IchoCruz
Ind13
Ind3
TalaHuasi
UNC-FCA-CREAN

2010

2011

ASHOGA
CAPTUR
CLUBANDINO
CVAV
Ind27
Ind3
TalaHuasi
VCP-Conc3
VCP-Conc4

Figure 4: Communication network in the San Antonio river basin in 2010 and 2011.21

2  Image produced with Netdraw, available in UCINet (Borgatti et al. 2002).
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in the basin are critically compounded by the lack of joint management efforts 
among actors with regulatory power in the area.

It is important to notice that even though the main actors in the network retain 
their relative importance from 2010 to 2011, the network experienced changes in 
its composition; 12 actors who were part of the network in 2010 had left it in 2011 
(they claimed they were no longer active in the discussion environment-related 
issues when they were contacted in 2011), whereas 23 actors that were not present 
in 2010 joined the network in 2011.

5. Methods
I test hypotheses 1 through 4 by estimating a stochastic actor-oriented model 
(SAOM) for network dynamics (Snijders et al. 2010). SAOMs can be used to 
model how actors in the network decide to create ties or destroy those that already 
exist. The model assumes that changes in ties reflect individual micro-adjustments 
(or “micro-steps”) that the actors make to improve their overall positions in the 
network. A SAOM models this process of “micro-steps” through the estimation 
of a network evaluation function which contains different terms, each of which 
represents the “attractiveness” of different network configurations for ego (the 
actor making the changes). In the case of the models estimated in this article, the 
function adopts the following form:

b b b

b b e

= Σ + Σ + = >

+ Σ Σ +Σ +

net
1 2 , 3

net net net
4

#{ | 0,max ( ) 0}

( ) .

i j ij ji j h ij ih jh ij ij ij hj

j ij h hj k k ijk ij

f x x x x x j x x x

x x s x
�

(1)

The first four terms represent the tendency of a node i to form the configurations 
contained in hypotheses 1 through 4, the fifth term represents other effects 
discussed below, and enet is the stochastic error term in the function.

In more detail, the first term represents the preference of ego i for the formation 
of reciprocal ties: an edge x

ij 
(directed from i to j) is reciprocated by an edge x

ji 

(directed from j to i). The second term represents the preference for the formation 
of transitive triads in the network. These two first terms provide a test for the 
first two hypotheses, which link high risk to the formation of bonding capital in 
networks (reciprocity and transitivity). Thus it is expected that coefficients b

1
 and 

b
2
 will be positive.

The third and fourth terms, on the other hand, represent the tendency of ego to 
make choices that increase the number of actors at distance two that it can reach 
(hypothesis 3) and that connect it to alters that are popular in the sense that they 
are contacted by many other nodes (hypothesis 4); collectively these two terms 
represent the search for structures that increase bridging capital in the network, 
which according to the “risk hypothesis” should be prevalent in social ecological 
systems that are not subject to high risk. Given that the San Antonio river basin 
is a HRSES, however, the expectation is to observe negative coefficients for b

3
 

and b
4
.
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The last term in the equation bΣ net net( ( ))k k ijk ijs x  represents the inclusion of k 
other effects that may help explain how actors in the network decide to build, 
maintain, or destroy links. A basic such effect is the simple outdegree or density 
effect, which must always be included in SAOMs (Ripley et al. 2011). In addition 
to the outdegree or density effect, I include other nodal attribute-related effects 
with the goal of replicating as much as possible the model presented in Berardo 
and Scholz (2010). In their article, the authors speculated that decisions made by 
an ego on what link to form at any given time could be explained by ego’s level of 
trust on others, the level of trust of the alter, or the similarity in the level of trust 
between ego and alter. The main rationale for the inclusion of these effects was 
that theorists of social capital usually assume that trust and tie formation are part 
of a “virtuous” cycle in which they reinforce each other. Thus they expected that 
an ego that shows a higher level of trust on others should tend to create more ties, 
but also that the likelihood that an ego creates a tie should increase when the alter 
shows higher level of trust. Furthermore, there was also an expectation for social 
homophily, with the chances of a tie forming increasing when both ego and alter 
happen to show high levels of trust.

To test these expectations, they measured trust with the following question: 
“Thinking about the range of contacts you had with other stakeholders, how much 
do you completely trust these stakeholders to fulfill promises and obligations 
made in the context of the (estuary) partnership?” (0=“complete distrust” and 
10=“complete trust”). In the San Antonio river, I asked an adapted version of this 
question, not mentioning “estuary partnership” but instead asking about promises 
and obligations in matters related to the management of natural resources in the 
basin (I used the same 0–10 scale). I then proceeded to include ego, alter, and ego-
alter similarity effects in my model to replicate the original study.32

Berardo and Scholz also included ego, alter, and similarity effects for a 
dummy variable capturing whether nodes are governmental (value of 1) or 
nongovernmental (value of 0). Governmental actors in the US estuaries that they 
studied are usually endowed with greater organizational resources that can explain 
a higher level of activity in a network, and so they included these effects with the 
expectation that their coefficients would be positive and significant, meaning that 
governmental actors would be more active in creating ties and receiving them 
(and additionally, that governmental actors would show a propensity to interact 

3  SIENA (the software used to estimate the models in this article) centers values for variables meas-
ured on interval scales. For each node, this is done by taking its score for the variable and then sub-
tracting from it the mean value scored by all nodes in the network.

Descriptive statistics for this variable and the other nodal attributes are contained in Table A1 in the 
Appendix. In cases of organizations with more than one respondent, I calculated the mean responses 
to assign values for attributes to the organization. Finally, for nodes in the network with missing data, 
I imputed data using conditional mean values by organizational type. For instance, if the organization 
that had missing data is an environmental NGO, then I assigned it attributes values equal to the mean 
values obtained from other environmental NGOs that are part of the network.



The evolution of self-organizing communication networks in high-risk social-ecological systems� 249

with each other more). I include the same dummy variable in my model as well to 
test for these three effects.43

An advantage of SAOMs is that they allow for the estimation of the coevolving 
process through which actors modify their network ties and change their individual 
attributes. The examination of this coevolving process is accomplished through 
the estimation of both the network evaluation function presented in equation 1, 
and a behavioral evaluation function that estimates how the nodes change a given 
behavior or attitudinal trait (Steglich et al. 2010). Berardo and Scholz (2010) 
modeled the change in levels of trust with the following behavioral evaluation 
function, which I replicate with the San Antonio river basin data;

b b b b e
∑

= + + + +
∑

beh beh
1 2 , 1 3 4 . .j ij j

i i i t i i i
j ij

x trust
f trust trust trust trust gov type

x
�

(2)

In this equation, the first term represents the linear tendency of trust to grow in 
time, while the second term controls for the effect of trust in 2010 on the changes 
that take place between 2010 and 2011. The third term is the average alter effect, 
defined as the product of ego’s trust multiplied by the average trust of her alters. 
A positive coefficient would indicate the presence of a social influence process, 
with ego’s trust growing in response to an increase in her alters’ average level of 
trust. The fourth term controls for the effect of the governmental actor dummy 
on the level of trust, which in the original study was hypothesized to be positive 
indicating that governmental actors may exhibit higher levels of trust than non-
governmental ones. Finally, εbeh is the stochastic error term for the function.

To perform the estimation of both the network evaluation function and 
the behavioral evaluation function I used SIENA, a software that implements 
SAOMs for network data collected longitudinally. SIENA relies on a simulation-
based estimator that treats data collected in 2010 and 2011 as snapshots of an 
underlying process in which changes in both network connections and levels of 
trust are assumed to reflect ongoing individual “micro-adjustments” made by the 
actors between the two moments when the data were collected.

The estimation of parameters is accomplished with a three-phase iterative 
stochastic simulation algorithm. During the first phase, the algorithm approximates 
the derivative matrix of observed network configurations (or “target statistics”) 
by parameters. The second phase progressively improves the value of the 
parameters through multiple simulations (4000 of them in this paper), with the 
goal of making the parameters more likely to produce statistics that equal those 
in the observed network. The final phase checks whether the average statistics 

4  Berardo and Scholz included a third attribute in their model, a 7-point scale measuring the re-
spondent’s self-reported orientation as pro-environmental (value of 1) or pro-development (value 
of 7). Their main goal was to model whether the likelihood of forming ties was conditioned on the 
similarity between ego and alter in this scale. I did not include this question in my surveys in the San 
Antonio river basin, and so I cannot include it in my model. Berardo and Scholz did not find any of 
the three effects associated with this variable to be significant at the 0.05 level.
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obtained in the simulations of phase 2 are close to the target statistics. If this is 
indeed the case, the model is said to “converge” toward the observed statistics, 
which is represented by small t statistics for deviations from targets. Convergence 
is considered excellent when these t-rations are <0.1, representing very small 
deviations in the simulated statistics from the observed statistics (see Snijders 
et al. 2010 for more information about the estimation procedure).

6. Results
Table 1 presents the results of the estimation of the models, with coefficients 
representing log odds ratios of the probability that a tie that creates the 
configuration is chosen over an alternative state (no change in ties, or creation of 
a tie that contributes to the formation of another configuration). The estimations 
converged properly, with t values <0.1 for all the parameters.

The table contains the results of the model in the Berardo and Scholz 
article in the left column, provided for comparison purposes. The middle 
column (model I) is the replication of the Berardo and Scholz model in the 
San Antonio River Basin. Finally, the rightmost column (model II) shows the 
results for an alternative model that includes four additional parameters. These 
four parameters were added after performing a “score-type test”, which helps 
identifying parameters that improve the fit of the model (Schweinberger 2012).5  
One parameters is added in the “other network structures” subsection in the table: 
Activity of Alter. This models the tendency of actors to create ties to alters that 
have many outgoing ties (high outdegree). The other three effects that are included 
in the fuller model are the ego, alter, and similarity effects for the variable number 
of respondents who are part of the node (organization). As explained before, 
when more than one respondent belong to the same organization, their responses 
were aggregated. Obviously, organizations represented by more respondents are 
more likely to have more edges in the network, both incoming and outgoing. 
The similarity effect is added to find out whether there is a tendency for larger 
organizations to interact with other organizations that are also comparatively 
large, as indicated by the number of respondents to the survey. The organizations 
with the larger representation in the surveys are environmental NGOs and 
Educational/Research Organization, and so a positive similarity effect would 
indicate collaboration between these two types of organizations.

Model II is the one with the better fit to the observed data, so I use the results 
in this model to test the hypotheses and draw conclusions about the evolution of 
the network of collaboration of stakeholders in the San Antonio river basin.

5  A “score-type test” consists in estimating a model with certain parameters restricted to a value of 0, 
and checking whether the goodness-of-fit of the model would be improved by “freeing” those fixed 
parameters. In this case, model I was estimated with the new parameters in model II as restricted 
parameters. Results showed that the inclusion of the restricted parameters would improve the perfor-
mance of the model, and so I include them in model II (see Schweinberger 2012 for more details). 
Results are available online at https://pantherfile.uwm.edu/berardo/www/research.htm.

https://pantherfile.uwm.edu/berardo/www/research.htm
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In general, the results of Model II in the San Antonio river basin, and those 
reported in Berardo and Scholz show networks that evolve in somewhat dissimilar 
ways. The first noticeable difference is in the size of the rate of change parameter 
(labeled “average choices per actor”), which models the speed at which actors 
may decide to create, maintain, or destroy links in the network. The value 4.85 in 
the 10 US estuaries studied by Berardo and Scholz indicates the average number 
of opportunities each actor had to change a tie between the two time periods they 
examined (not necessarily making that change though). In the San Antonio river 

Table 1: Comparison of longitudinal analyses of self-organizing networks in US estuaries and 
the San Antonio river basin.

 
 

Berardo and 
Scholz (2010)

  San Antonio 
river basin (I)

  San Antonio 
river basin (II)

Coefficients (St. error in parentheses)

Partner Selection (network evaluation function)      
Average Choices per Actor (rate of change)   4.85** (0.51)   20.75** (2.93)   18.58** (3.48)
Network Structures      
High-Risk Cooperation      
  Reciprocity   0.66** (0.24)   0.02 (0.21)   0.13 (0.26)
  Transitive triads   0.12 (0.07)   0.12** (0.03)   0.17** (0.03)
Low-Risk Coordination      
  Popularity of Alter   0.21** (0.02)   0.33** (0.05)   0.49** (0.07)
Other Network Structures      
  Outdegree   –2.20** (0.12)   –2.41** (0.13)   –2.36** (0.17)
  Activity of Alter       –0.45 ** (0.09)
Ego’s attributes
  Generalized Trust   –0.05 (0.06)   –0.08 (0.06)   –0.08 (0.06)
  Government Actor   0.03 (0.13)   –0.30 (0.26)   –0.22 (0.27)
  Number of Respondents       0.27** (0.08)
Alter’s attributes      
  Generalized Trust   0.03 (0.04)   0.08 (0.07)   –0.04 (0.08)
  Government Actor   0.21 (0.12)   –0.15 (0.25)   0.03 (0.31)
  Number of Respondents       0.31** (0.09)
Dyadic Similarity      
  Generalized Trust   0.13 (0.80)   0.99 (0.91)   –0.49 (1.13)
  Government Actor   0.19 (0.13)   –0.23 (0.28)   0.08 (0.33)
  Number of Respondents       1.67* (0.66)
Trust Evolution (behavioral evaluation function)      
Average Choices per Actor (rate of change)   7.05** (1.80)   3.30** (1.03)   3.25* (1.29)
Ego’s Effects      
  Trust Tendency   0.01 (0.05)   0.30 (0.47)   0.34 (0.43)
  Effect of Trust in 2010   –0.00 (0.02)   –0.34 (0.24)   –0.36 (0.29)
  Effect of Government Actor   0.11 (0.10)   –0.07 (0.27)   –0.06 (0.30)
  Effect of Number of Respondents       0.04 (0.10)
Alter’s Effects      
  Influence of alter’s trust   4.78** (1.62)   0.03 (1.13)   –0.05 (0.62)

*p<0.05, **p<0.01 (2-tail).
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basin this value is much higher (18.59), which is simply explained by the fact that 
there are sizeable changes in the network between the two observation points in 
terms of who participates, with some actors being active in 2010 but not 2011 and 
vice versa. This “instability” in the communication network gives actors a larger 
number of opportunities to make decisions about who to get in contact with, and 
this in turn is reflected in the rate parameter.6

Another difference is on the relationship between trust and network activity. 
Berardo and Scholz did not see any effect of trust on tie formation, but instead 
identified a “contagion” effect of network activity on trust, with actors increasing 
their levels of trust after the average level of trust of their alters grew. In the San 
Antonio basin this social influence effect is entirely absent. It is not easy to discern 
why, though a plausible explanation would be that links between actors are not 
stable or strong enough to facilitate something more than the simple exchange of 
information about environmental-related issues.

In regards to the coefficients for reciprocity, transitive triads, and popularity 
of alter, which serve to test the main hypotheses of this paper, there are subtle 
differences between the findings in the San Antonio basin and the 10 US estuaries 
studied by Berardo and Scholz, where actors did not show a tendency to build 
transitive triads, but instead had a preference for the simpler way of bonding 
represented by dyadic reciprocity. In the San Antonio river basin, this finding is 
reversed. Whereas actors do not seem to gravitate toward the reciprocation of ties, 
contrary to the prediction of hypothesis 1, they do in fact engage in building more 
transitive triads, which provides support for hypothesis 2.7

In general then, results show that actors in the San Antonio river basin 
have a tendency to create closed structures that facilitate the transmission of 

6  Another way of quantifying change in the network is through the Jaccard index. It divides the 
number of ties present in the two observation points by the sum of the ties present in both observation 
points plus the number of new ties and the number of ties that have been terminated between the two 
periods. Values of <0.2 would lead to questioning the assumption that the change process is gradual, 
and hence would discourage the use of the type of model that is estimated in this paper (Snijders et al. 
2010). The value of the Jaccard index in this study is 0.23 (see Table A1 in the Appendix), while in 
the Berardo and Scholz study it climbed to 0.26. The lower value of the coefficient in the San Antonio 
river basin indicates higher turnover in the network, which goes in hand with the observed higher rate 
of change mentioned above.
7  The “open 2-path” effect linked to hypothesis 3 was removed from the results table in Berardo and 
Scholz (2010) and is also removed here to preserve comparability with the original model as much as 
possible. The effect is highly correlated with the transitivity effect, which increases the standard errors 
and consequently drops the statistical significance of both effects. In the case of the San Antonio river 
basin, the transitivity coefficient is statistically significant only at the 0.1 level if the “open 2-path” is 
added into the model, with the latter being negative as predicted, but statistically insignificant at 0.1 
level or lower (the effect becomes significant at 0.01 level if the transitivity effect is removed, which 
goes in line with hypothesis 3). Regardless of this statistical issue, it bears noticing that the negative 
coefficient for open 2-paths and the positive effect of transitive triads when included together imply 
that the former structures in the network tend to be embedded in the latter. Altogether, this indicates 
that in the HRSES of the San Antonio river basin there is in fact more bonding network capital, which 
the specialized literature identifies as an enabler of sustained collaboration in the network.
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overlapping information that is thought to be a key ingredient to avoid defection 
in the long run. Moreover, the fact that they favor the creation of transitive triads 
over the simpler bonding structure of reciprocal dyads suggests that actors in 
general value (either explicitly or implicitly) the greater reassurance against 
multi-actor defection that transitivity provides and which reciprocity cannot 
offer (since an ego that creates a transitive triad receives direct information 
about the two other members but indirect information about one of them as 
well). This result provides further support for the “risk hypothesis”, which 
predicts that a tendency for the formation of transitive triads would be present 
in HRSES.

But this overall picture of high risk linked to the emergence of bonding 
capital becomes more nuanced once other effects are considered. According to 
hypothesis 4, the expectation in a HRSES is to observe fewer star-like structures 
with a popular actor fulfilling a coordination role. However, the coefficient for 
the “popular alter” effect in Table 1 is positive and statistically significant at the 
0.01 level, which means that over time the actors in the network try to gather 
information from actors who are already very active in the role of providing 
information to others (but not in the role of seeking information from others, as 
indicated by the negative and significant “Activity of alter” coefficient). In other 
words, the bonding capital that is formed when transitive triads emerge in time 
is complemented with the formation of structures that are – ideally at least – 
conducive to the potential solution of coordination problems.

Interestingly, the coordination role is not fulfilled by governmental actors, 
who are not more active than non-governmental actors in the basin (neither 
the ego nor the alter effects are distinguishable from zero). In fact, a visual 
comparison of the network in 2010 and 2011

 
(see Figure 4) shows that the nodes 

that tend to be more central are usually either environmental NGOs, interest 
groups, or social movements (ADARSA, FUNEAT, Argentine Ecosystems, etc.), 
or educational or research organizations (CONICET and National University of 
Cordoba – UNC – to name a few). These are actors that are in general well-
endowed with the capacity to generate and/or gather and communicate technical 
information that can be used to assess the depth of environmental problems 
in the basin and their potential solutions, and in this sense can help solving 
coordination problems.

7. Implications for the study of networks in social ecological 
systems
In this paper I have offered a complementary test of the “risk hypothesis” 
(Berardo and Scholz 2010) in a HRSES, where multiple actors coexist in an 
area where environmental problems are inter-jurisdictional in nature. Studying 
how communication networks form and evolve among stakeholders is important 
because social interactions may have a critical effect on the likelihood of achieving 
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the sustainable use of common pool resources (Ostrom 2009; Schneider et al. 
2003; Scholz et al. 2008).

While the “risk hypothesis” includes clear expectations about the linkage 
between risk level and network configurations, the original article that proposed 
it did not provide a full test, since it focused on the analysis of networks that 
formed and evolved in relatively low-risk social ecological systems. Berardo and 
Scholz (2010) analyzed the networks in 10 US estuaries that were not subject to 
particularly acute environmental problems, and thus could not produce empirical 
evidence to demonstrate whether high-risk is in fact associated with network 
configurations that produce bonding capital.

The selection of the case studied in this paper was made purposely to 
address this shortcoming since the San Antonio river basin is a high-risk social-
ecological system where environmental problems result from the excessively 
fragmented, non-coordinated behavior of both resource users and governmental 
authorities. The findings provide support for the basic expectation contained in 
the “risk hypothesis” that in highly-risky situations there is a tendency to observe 
triadic structures that favor bonding among actors, which produces overlapping 
information needed to prevent defection and trigger collaborative behavior. But 
they also show that actors have a tendency to search popular alters that can help 
solve coordination problems.

Of course, it is interesting and relevant from a practical standpoint to examine 
whether the existence of such structures actually leads to better management 
of common-pool resources through the solution of those types of problems. 
Unfortunately, it is not possible to achieve this goal without collecting more data, 
but considering the fact that the most central positions in the network are occupied 
by non-governmental actors at least warrants caution about the real chances in 
this system of finding quick solutions to coordination problems of a regional 
scale. The environmental NGOs, social movements, and educational/research 
organizations that occupy the central positions of leadership in this evolving 
network are actors with no capacity to impose regulations that can lead to a more 
sustainable management of common-pool resources in the area, and thus have 
limited power to exert enough pressure on the governance subsystem to force 
behavioral changes leading to the improvement of environmental conditions in 
the basin.

There is a final implication that is important from a theoretical standpoint. 
The fact that the creation of bonding structures coexist with the search of 
popular actors in the San Antonio river basin suggests that both coordination 
and cooperation problems are present in this HRSES. This finding suggests 
that the analytical separation made by Berardo and Scholz between high-risk/
high-bonding versus low-risk/high-bridging SE systems may be too simplistic. 
Better theories are needed to account for the complex evolving processes that are 
shaped by actors facing a mixture of problems that require simultaneous, rather 
than sequential, attention.
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8. Conclusion
Overall, the results in this paper showed that any analysis of the capacity of a 
governance subsystem in a HRSES to solve common-pool resource management 
problems must take into account not only the types of structures that exist in 
communication networks, but also the types of actors that partake in them and 
their predisposition to work jointly with others. Certain network configurations 
may indeed be necessary to improve how CPRs are used, but they are unlikely 
to be sufficient to achieve that goal in the absence of widespread participation 
by the whole gamut of actors that are active in the governance subsystem. 
Improving the management of common-pool resources in HRSES thus requires 
bonding, bridging, but also (and perhaps mainly) a fully-connected network 
where governmental actors adopt a very active role in the exchange of relevant 
information.

This article is not without limitations. Even though I provide a plausible 
explanation of the emergence of informal networks that facilitate information 
flows and adaptive governance (Folke et al. 2005, 459), there are factors – both 
endogenous and exogenous – that may affect network formation and evolution, 
but which have not been accounted for in this work. Among the former, for 
example, are the nuanced motivations of actors for building ties. Actors may 
choose to build ties because they want to garner technical information that 
they can use in policy-making processes, because they need to learn about the 
intricacies of overlapping regulations that may affect the management practices 
in which they are engaged, etc. Future research must not only identify the flows 
of information between actors in the networks, but also explicitly determine 
what the information is collected for. This will help fill the blanks in more 
comprehensive explanations of the motivations of actors when building their 
ties, which remains incomplete.

There are exogenous factors to consider as well. For example, not all 
networks will respond the same way to external shocks in the form of 
environmental crises that can affect how actors engage each other. Behavior 
inside the network is likely to be conditional on the institutional architecture in 
which the networks are embedded (Lubell et al. 2012), and on variables such as 
the political culture that predominates among its members. Additionally, even 
though single case studies can be used to test the plausibility of theories, they 
are not overly helpful in developing those theories because their results can be 
rarely generalized.

Future research needs to advance more decisively upon the weaknesses of this 
study, and produce further empirical evidence on the relationship between risk 
and network evolution in more cases over longer periods of time. Only then will 
we be able to create a comprehensive explanation of how social and/or political 
interactions can help solve the problems of overuse of common-pool resources in 
complex Social-Ecological systems.
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Appendix

Table A1: Descriptive statistics.

Actor-Level Variables   Mean   Standard Dev.   Min   Max

Generalized Trust 2010   4.39   1.51   0   10
Generalized Trust 2011   4.96   1.41   0   10
Number of Respondents   1.29   1.30   0   7
Government Actor   0.24     0   1

Network-Level Statistics   2010 (t
1
)   2011 (t

2
)

Number of nodes   59   70
Average degree by node   4.20   4.84
Number of total ties   248   341
Missing data fraction   0.27   0.19

Change in Links   2010 (t
1
)–2011 (t

2
)

0→0   0→1   1→0  1→1   Distance  Jaccard   Missing   (t
1
)→(t

2
)

4482   211   142   106   229   0.23   1701   (26%)

Change in Trust   2010 (t
1
)–2011 (t

2
)

Actor Changes   Down   Up   Constant
  12   28   7

Total Step Changes   Down   Up
 

Total t
1
→t

2

  21   44   65
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